skip to content

Publications since 2007

  1. Ashykhmina, H. M. Geier, N. Frerigmann, E. Hofsetz, N. Stührwohldt, U.-I. Flügge, I. Haferkamp, S. Kopriva and T. Gigolashvili (2019). PAPST2 plays a critical role for PAP removal from the cytosol and subsequent degradation in plastids and mitochondria. The Plant Cell, Nov 21. pii: tpc.00512.2018.
  2. Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumara V, Brands M, Dörmann P, Gigolashvili T, Turck F, and Bucher M (2018). AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Proc. Natl. Acad. Sci. USA 115, E9239-E9246
  3. Loeschcke A, Dienst D, Wewer V, Hage-Hülsmann J, Dietsch M, Kranz-Finger S, Hüren V, Metzger S, Urlacher VB, Gigolashvili T, Kopriva S, Axmann IM, Drepper T, Jaeger KE. (2017). The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis. PLoS One. Dec 27;12(12):e0189816. 
  4. T. Gigolashvili , M. Geier, N. Ashykhmina, H. Frerigmann, E. Hofsetz, N. Stührwohldt, U.-I. Flügge, I. Haferkamp and S. Kopriva (2017). Identification of 3’-phosphoadenosine 5‘-phosphate (PAP) transporter localized in mitochondria and chloroplasts in Arabidopsis thaliana. The Plant Cell. under revision.
  5. Chan KX, Mabbitt PD, Phua SY, Mueller JW, Nisar N, Gigolashvili T, Stroeher E, Grassl J, Arlt W, Estavillo GM, Jackson CJ, Pogson BJ (2016). Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase. PNAS 113(31): 4567-4576
  6. Kopriva S and Gigolashvili T (2016). Glucosinolate synthesis in the context of plant metabolism. Chapter in the Book „Advances in Botanical Research” DOI: 10.1016/bs.abr.2016.07.002
  7. Aarabi F, Kusajima M, Tohge T, Konishi T, Gigolashvili T, Takamune M , Sasazaki Y, Watanabe M, Nakashita H, Fernie AR, Saito K, Takahashi H, Hubberten H.-M, Hoefgen R, Maruyama-Nakashita (2016). A Sulfur-deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants. Science Advances 07 Oct 2016: Vol. 2, no. 10, e1601087DOI: 10.1126/sciadv.1601087
  8. Frerigmann H., Pislewska-Bednarek M., Sánchez-Vallet A., Molina A., Glawischnig E., Gigolashvili T, and Bednarek P. (2016) Regulation of pathogen triggered tryptophan metabolism in Arabidopsis thaliana by MYB transcription factors and indole glucosinolate conversion products. Molecular Plant. 9 (5): 682–695
  9. Kottb M, Gigolashvili T, Großkinsky D. and Piechulla B. (2015). Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Frontiers in Microbiology. DOI:10.3389/fmicb.2015.00995
  10. Frerigmann H., Glawischnig E. and Gigolashvili T. (2015). The role of MYB34, MYB51 and MYB122 in the regulation of camalexin biosynthesis in Arabidopsis thaliana. Frontiers in Plant Science 08/2015; 6. DOI:10.3389/fpls.2015.00654
  11. Zhao Y., Wang Y., Liu Y., Miao H., Cai C., Shao Z., Guo R., Sun B., Jia C., Zhang L., Gigolashvili, T.  Wang Q. (2015). Classic Myrosinase-dependent Degradation of Indole Glucosinolate Attenuate Fumonisin B1-Induced Programmed Cell Death in Arabidopsis. The Plant Journal (6). DOI:10.1111/tpj.12778
  12. Frerigmann H, Berger B and Gigolashvili T (2014). bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis thaliana. Plant Physiology. 166: 349-369.
  13. Gigolashvili T and Kopriva S (2014). Transporters in plant sulfur metabolism. Frontiers in Plant Science Sep 9;5: 442. doi: 10.3389/fpls.2014.00442 (Review).
  14. Frerigmann H and Gigolashvili T (2014). The three MYB transcription factors MYB34, MYB51 and MYB122 exert distinct regulation on indolic glucosinolate biosynthesis in Arabidopsis thaliana. Molecular Plant. 7 (5): 814-828.
  15. Frerigmann H and Gigolashvili T (2014). Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency. Frontiers in Plant Science. 5(626): 1-10.
  16. Benstein RM, Ludewig K., Wulfert S., Wittek S., Gigolashvili T, Frerigmann H., Gierth M, Flügge U.-I, Krueger S. (2013). The Arabidopsis phosphoglycerate dehydrogenase 1 (PGDH1) of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. Plant Cell 25, 5011-5029.
  17. Frerigmann H, Böttcher C, Baatout D, and Gigolashvili T (2012). Glucosinolates are produced in trichomes of A. thaliana. Front. Plant Sci. 3: 242.
  18. Gigolashvili T, Geier M, Ashykhmina N, Frerigmann F, Wulfert S, Krueger S, Mugford SG, Kopriva S, Haferkamp I and Flügge UI (2012). The Arabidopsis thylakoid ADP/ATP carrier TAAC has a primary role in supplying plastidic phosphoadenosine 5‘-phosphosulfate (PAPS) to the cytosol. Plant Cell 24, 4187-4204.
  19. Yatusevich R, Mugford SG, Matthewman C, Gigolashvili T, Frerigmann H, Delaney S, Koprivova A, Flügge UI, Kopriva S (2010). Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. Plant J. 62, 1-11.
  20. Gigolashvili T, Yatusevich R, Rollwitz I, Humphry M, Gershenzon J, Flügge UI (2009). The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Plant Cell 21, 1813-1829.
  21. Gigolashvili T, Berger B, Flügge UI (2009). Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem. Rev. 8, 3-13.
  22. Mugford SG, Yoshimoto N, Reichelt M, Wirtz M, Hill L, Mugford ST, Nakazato Y, Noji M, Takahashi H, Kramell R, Gigolashvili T, Flügge UI, Wasternack C, Gershenzon J, Hell R, Saito K, Kopriva S (2009). Disruption of adenosine-5'-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites. Plant Cell 21, 910-927.  
  23. Prabhakar V, Löttgert T, Gigolashvili T, Bell K, Flügge UI, Häusler RE (2009). Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett. 583, 983-991.
  24. Frerigmann H, Berger B, Gigolashvili T, Flügge UI (2009). Interaction of MYB and BHLH transcription factors in regulation of glucosinolate biosynthesis. In: Sulfur metabolism in plants: Regulatory aspects, significance of sulfur in the food chain, agriculture and the environment. Sirko A, De Kok L.J, Haneklaus S, Hawkesford MJ, Rennenberg H, Saito K, Schnug E, and Stulen I, Backhuys Publishers, Leiden, pp. 231-234.
  25. Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge, UI (2008). HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol. 177, 627-642.
  26. Berger B, Stracke R, Yatusevich R, Weisshaar B, Flügge UI, Gigolashvili T (2007). A simplified method for the analysis of transcription factor-promoter interactions that allows high-throughput data generation. Plant J. 50, 911-916.
  27. Gigolashvili T, Berger B, Mock H-P, Müller C, Weisshaar B, Flügge UI (2007). The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 50, 886-901.
  28. Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge UI (2007). The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 51, 247-261.